Never-ending learning with dynamic hidden Markov network

نویسندگان

  • Konstantin Markov
  • Satoshi Nakamura
چکیده

Current automatic speech recognition systems have two distinctive modes of operation: training and recognition. After the training, system parameters are fixed, and if a mismatch between training and testing conditions occurs, an adaptation procedure is commonly applied. However, the adaptation methods change the system parameters in such a way that previously learned knowledge is irrecoverably destroyed. In searching for a solution to this problem and motivated by the results of recent neuro-biological studies, we have developed a network of hidden Markov states that is capable of unsupervised on-line adaptive learning while preserving the previously acquired knowledge. Speech patterns are represented by state sequences or paths through the network. The network can detect previously unseen patterns, and if such a new pattern is encountered, it is learned by adding new states and transitions to the network. Paths and states corresponding to spurious events or ”noises” and, therefore, rarely visited, are gradually removed. Thus, the network can grow and shrink when needed, i.e. it dynamically changes its structure. The learning process continues as long as the network lasts, i.e. theoretically forever, so it is called neverending learning. The output of the network is the best state sequence and the decoding is done concurrently with the learning. Thus the network always operates in a single learning/decoding mode. Initial experiments with a small database of isolated spelled letters showed that the Dynamic Hidden Markov network is indeed capable of never-ending learning and can perfectly recognize previously learned speech patterns.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Learning Models of World Dynamics Using Bayesian Networks

Dynamic Bayesian networks (DBN's) provide a framework for learning in the context of stochastic time-series. DBN's are factored and allow learning of hidden state; in fact both hidden Markov models and Kalman filters can be thought of as subclasses of DBN's. In this thesis, I explore the use of DBN's to learn models of world dynamics. DBN's are learned both under assumption of the Markov proper...

متن کامل

Learning Dynamic Models from Non-sequenced Data

Learning Dynamic Models ❑ Useful for analyzing time-evolving data ❛ Hidden Markov Models ❛ Dynamic Bayesian Networks ❛ System Identification ❛ Key assumption: SEQUENCED observations What if observations are NOT SEQUENCED? ❑ Galaxy evolution (many snapshots, no ordering) ❑ Slow-developing diseases (e.g., Alzheimer’s) ❑ Destructive measurement for biological processes Example: Gene Expression Tim...

متن کامل

Approximate Learning in Temporal Hidden Hopfield Models

Many popular probabilistic models for temporal sequences assume simple hidden dynamics or low-dimensionality of discrete variables. For higher dimensional discrete hidden variables, recourse is often made to approximate mean field theories, which to date have been applied to models with only simple hidden unit dynamics. We consider a class of models in which the discrete hidden space is defined...

متن کامل

Improving Phoneme Sequence Recognition using Phoneme Duration Information in DNN-HSMM

Improving phoneme recognition has attracted the attention of many researchers due to its applications in various fields of speech processing. Recent research achievements show that using deep neural network (DNN) in speech recognition systems significantly improves the performance of these systems. There are two phases in DNN-based phoneme recognition systems including training and testing. Mos...

متن کامل

Stock Trading by Modelling Price Trend with Dynamic Bayesian Networks

We study a stock trading method based on dynamic bayesian networks to model the dynamics of the trend of stock prices. We design a three level hierarchical hidden Markov model (HHMM). There are five states describing the trend in first level. Second and third levels are abstract and concrete hidden Markov models to produce the observed patterns. To train the HHMM, we adapt a semi-supervised lea...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007